
A convergence proof for the Schwinger variational method for the scattering amplitude

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 1379

(http://iopscience.iop.org/0305-4470/8/9/005)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A :  Math. Gen., Vol. 8. No. 9. 1975. Printed in Great Britain. 0 1975 

A convergence proof for the Schwinger variational method for 
the scattering amplitude 
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Physics Department, York University, Downsview, Ontario, Canada, M3J 1 P3 

Received 12 May 1975 

Abstract. We show that with certain restrictions on the trial functions the Schwinger 
variational method yields a convergent process for computing the scattering amplitude in 
scattering from short-range potentials. 

1. Introduction 

Various forms of variational methods have been used extensively in computing scat- 
tering data involving a variety of interactions (see eg Mott and Massey 1965). Most of 
these methods reduce to either the Schwinger method (sv) or the Kohn method (Singh 
1973). Recently we have rigorously studied both these methods when they are used to 
compute the tangent of the phase shift for the case of partial wave scattering from a 
potential z V ( r )  (Singh and Stauffer 1974a). The potential was assumed to satisfy the 
following conditions : 

and to be of definite sign so that, by absorbing the sign in the potential strength z ,  V ( r )  
can be taken to be positive. In the present paper we extend the treatment to the case 
where sv is used to compute the scattering amplitude. We show that, with certain re- 
strictions on the trial functions, sv yields a convergent process for determining the wave- 
function and the scattering amplitude. These restrictions will be seen not only to assure 
the convergence but also to reduce the computational labour. 

2. Preliminary remarks 

In potential scattering one is interested in solving the Lippmann-Schwinger equation 

(2,) 

where 
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are the free particle Green functions with energy E = hk2 and k +  and k -  are the momenta 
of the incident and the scattered particle respectively. We consider the case of $+(r). 
The case of $ - ( r )  is treated similarly. The scattering amplitude Tis  given by: 

T =  -- j e-ik-.rV(r)$+(r)dr. ( 3 )  471 

By multiplying (2,) by $E(r)V(r), integrating and adding the resultant identity to ( 3 )  
we get an alternate expression, T,, for T, namely 

The advantage in dealing with T, ,  instead of T, is that considered as a functional of 
it is stationary with respect to arbitrary and independent variations of $+  about their 
exact values (Mower 1955). 

In sv one constructs K($'*) by replacing $, on the right-hand side of (4) by some 
trial functions containing arbitrary parameters. These parameters are then varied 
to obtain the stationary value T, of T,(I)~,) which is taken to be the approximate value of 
T. Because of computational advantages, $$ are often chosen to be linear combinations 
of some 'basis functions'. As we have shown previously (Singh and Stauffer 1974b) $'+ 
and $t- must contain the same number of terms and for best results be constructed 
from the same basis functions $i, ie 

n 

$$ = 1 ( 5 )  
i =  1 

By setting the derivatives of TJ$'+) with respect to the 
following sets of algebraic equations : 

equal to zero one obtains the 

= J $?(r)V(r) elki.* dr i = 1, . . . ,  n. 

With these restrictions on the trial functions, it is sufficient tQ solve only the set given 
by (6,) and T, is given by: 

( 7 )  

for T given 

T = _ _  , - i k - . r  5 W)$'+(r) dr. 47c 

I t  is pertinent to remark here that the original stationary expression 
by Schwinger (1947, Lectures on Nuclear Physics, unpublished) was 

It can be shown that, with the forms of $: given above, the stationary values of E($'+) 
and TJ$'+) are identical. Hence in our terminology sv implies the solution of (6,) 
followed by the evaluation of T, via (7). In the following section we show there are further 
restrictions on { $ J  to ensure the convergence of sv. 
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3. Convergence of the Schwinger method 

We denote by X the Hilbert space of square integrable functions of Y. Let f ' = V'  '2$1 , 
gk = ~ 1 ' 2  and K ' be the operators defined by : 

( K  ' u ) ( r )  = - V1 '(v)G,(v, rl)V'''(rl)u(rl) dv, 
4n 's (9) 

for each U in X With a V which satisfies the conditions given by (l), K' are Hilbert- 
Schmidt operators and f*, g' are in .@ (see, eg Scadron et a1 1964). Instead of (2,) we 
consider the transformed equations 

(1 + z K ' ) f '  = g' (10) 

T = q($') is given by 

4 n ~ - ' T  = - ( g - / f + )  = ( f - l ( l  + z K + ) f + ) - ( f - l g + ) - ( g - I f + )  (11) 

where (ul t . )  = J u*(v)c(v)  dv is the scalar product in Y? 
After this preparation we are in a position to prove the following theorem 

Theorem 

If the 'basis set' [$,I = [ V " 2 $ i }  is an orthonormal basis in X, then: (i) sv yields a con- 
vergent process to determine $+  and T ;  (ii) the error in T, is of second order in the error 
in $'+ . 

We remark that for computational purposes it is sufficient that { 4 i }  be linearly 
independent rather than strictly orthonormal. 

Prooj 

(i) With the conditions of the theorem, (6,) reduces to : 
n 

It is straightforward to show that f: = E;= I C Z , + ~ ~  + f" in  the norm of # (Mikhlin 
1964). In brief. the argument is based on the fact that. since K +  is compact. 

K J  = P n K + P n ~  K' 

where Pn = E:= , 14i) (4zl and 3 denotes uniform convergence. Since ( 1  + ;K + ) -  
exists it follows that (1 +zK;) - '  also exists for each n greater than some N ,  and 
(1 +zK;) - '  + (1 + z K + ) - ' .  (12) is equivalent to 

(1 + z K , + ) f , +  = Png (13) 

and since llPng+-g+ll -+ 0, it follows that Ilfi - f + l l  -+ 0, where II . . . I/  denotes the 
norm in .H. It is now obvious that Tn = -(;/4n)(g-/f:) -+ T. 
(ii) Following the same line of argument as in the proof of (i) one observes that 

n 

C r~ ( 4 i / ( l +  z K - ) 4 j >  = (4iIg-> i = 1, . . . ,  n (14) 
3 =  1 
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has a solution for sufficiently large n and that 
n 

f, = 1 - f -  
j =  1 

Thus the error in T. is Ollfn- - f - I l  !If,’ - f+  j l .  Since fn- is accurate to the same order 
as f,’ the error in T, is of second order in the error in f,’. 

In the following we prove the existence of a potential for which T, is the exact scatter- 
ing amplitude. 

Proposition 

T,, is the exact scattering amplitude corresponding to the potential zV ,  = Z V ” ~ P , , V ” ~ .  
(Note that V ,  is a non-local potential while I/ is local.) 

Proof 

From (1 3) one has that 

f,’ + Z P , V ” ~ G , V ” ~ P  n f’ n = Prig'. (16) 

The detailed meaning of (16) is as given by (9). Let I,&,, = G +  V’”P,f,‘. I t  is obvious 
that $S ,  = eik+.*-z$, is a scattering state function. Further I,&,, is a particular solution of 

(Ho--E)$n = V1’2Pnf,’= vy,‘ = I/”2Png+ -z1/1/2PnVl:2$n (17) 

where H ,  is the free particle Hamiltonian. That is 

(H,-E+zV,)$; = 0. (18) 

I t  follows from (18) that $S ,  is the exact scattering state solution of the Schrodinger 
equation with potential zV,. From the asymptotic behaviour of $: it follows that T, 
is the exact scattering amplitude corresponding to the potential zV,. 

In spite of its simplicity the proposition has useful consequences. For example it is 
now obvious that T, satisfies the optical theorem (see, eg, Prugovecki 1971). Hence the 
approximate total cross section in sv can be determined from the knowledge of the imagi- 
nary part of the approximate forward scattering amplitude. 
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4. Discussion 

To assure the convergence of sv in computing the scattering amplitude we require 
{ V 1 / 2 $ i j  to be a basis set in X One such basis is obtained from the perturbation ex- 
pansion of $+, ie $i = ( G + V ) i - l  eik+.* , i = 1,2, .  . . . With this particular choice sv 
becomes the method of moments. If one considers partial wave scattering and replaces 
G, by its principal value, one can formulate sv for tan 6 where S is the usual scattering 
phase shift. In this case the method of moments reduces to the method of Pade approxi- 
mants (Singh and Stauffer 1974a). 

We have proved the convergence of the Kohn variational method for tan 6 (Singh 
and Stauffer 1974a). However, since the symmetry of K plays an important role in 
that case, we have been unable to extend it to the case of the scattering amplitude. 
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